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Preface

As we have prepared an updated edition our first priorities
are to preserve, and to enhance, the qualities that have made
previous editions so successful. In particular, we adopt the
viewpoint of an applied mathematician with diverse interests
in differential equations, ranging from quite theoretical to
intensely practical--and usually a combination of both. Three
pillars of our presentation of the material are methods
of solution, analysis of solutions, and approximations of
solutions. Regardless of the specific viewpoint adopted, we
have sought to ensure the exposition is simultaneously correct
and complete, but not needlessly abstract.

The intended audience is undergraduate STEM students
whose degree program includes an introductory course in
differential equations during the first two years. The essential
prerequisite is a working knowledge of calculus, typically a
two- or three-semester course sequence or an equivalent. While
a basic familiarity with matrices is helpful, Sections 7.2 and 7.3
provide an overview of the essential linear algebra ideas needed
for the parts of the book that deal with systems of differential
equations (the remainder of Chapter 7, Section 8.5, and
Chapter 9).

A strength of this book is its appropriateness in a
wide variety of instructional settings. In particular, it allows
instructors flexibility in the selection of and the ordering of
topics and in the use of technology. The essential core material
is Chapter 1, Sections 2.1 through 2.5, and Sections 3.1 through
3.5. After completing these sections, the selection of additional
topics, and the order and depth of coverage are generally at
the discretion of the instructor. Chapters 4 through 11 are
essentially independent of each other, except that Chapter 7
should precede Chapter 9, and Chapter 10 should precede
Chapter 11.

A particularly appealing aspect of differential equations
is that even the simplest differential equations have a direct
correspondence to realistic physical phenomena: exponential
growth and decay, spring-mass systems, electrical circuits,
competitive species, and wave propagation. More complex
natural processes can often be understood by combining and
building upon simpler and more basic models. A thorough
knowledge of these basic models, the differential equations
that describe them, and their solutions--either explicit solutions
or qualitative properties of the solution--is the first and
indispensable step toward analyzing the solutions of more
complex and realistic problems. The modeling process is
detailed in Chapter 1 and Section 2.3. Careful constructions
of models appear also in Sections 2.5, 3.7, 9.4, 10.5, and
10.7 (and the appendices to Chap er 10). Various problem sets
throughout the book include problems that involve modeling
to formulate an appropriate differential equation, and then
to solve it or to determine some qualitative properties of its
solution. The primary purposes of these applied problems are
to provide students with hands-on experience in the derivation
of differential equations, and to convince them that differential

equations arise naturally in a wide variety of real-world
applications.

Another important concept emphasized repeatedly
throughout the book is the transportability of mathematical
knowledge. While a specific solution method applies to only a
particular class of differential equations, it can be used in any
application in which that particular type of differential equation
arises. Once this point is made in a convincing manner, we
believe that it is unnecessary to provide specific applications of
every method of solution or type of equation that we consider.
This decision helps to keep this book to a reasonable size, and
allows us to keep the primary emphasis on the development
of more solution methods for additional types of differential
equations.

From a student’s point of view, the problems that are
assigned as homework and that appear on examinations define
the course. We believe that the most outstanding feature of
this book is the number, and above all the variety and range,
of the problems that it contains. Many problems are entirely
straightforward, but many others are more challenging, and
some are fairly open-ended and can even serve as the basis
for independent student projects. The observant reader will
notice that there are fewer problems in this edition than in
previous editions; many of these problems remain available
to instructors via the WileyPlus course. The remaining 1600
problems are still far more problems than any instructor can
use in any given course, and this provides instructors with a
multitude of choices in tailoring their course to meet their own
goals and the needs of their students. The answers to almost all
of these problems can be found in the pages at the back of the
book; full solutions are in either the Student’s Solution Manual
or the Instructor’s Solution Manual.

While we make numerous references to the use of
technology, we do so without limiting instructor freedom to
use as much, or as little, technology as they desire. Appropriate
technologies include advanced graphing calculators (TI
Nspire), a spreadsheet (Excel), web-based resources (applets),
computer algebra systems, (Maple, Mathematica, Sage),
scientific computation systems (MATLAB), or traditional
programming (FORTRAN, Javascript, Python). Problems
marked with a G are ones we believe are best approached with
a graphical tool; those marked with a N are best solved with the
use of a numerical tool. Instructors should consider setting their
own policies, consistent with their interests and intents about
student use of technology when completing assigned problems.

Many problems in this book are best solved through
a combination of analytic, graphic, and numeric methods.
Pencil-and-paper methods are used to develop a model that
is best solved (or analyzed) using a symbolic or graphic
tool. The quantitative results and graphs, frequently produced
using computer-based resources, serve to illustrate and to
clarify conclusions that might not be readily apparent from
a complicated explicit solution formula. Conversely, the

vii
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implementation of an efficient numerical method to obtain
an approximate solution typically requires a good deal of
preliminary analysis--to determine qualitative features of the
solution as a guide to computation, to investigate limiting
or special cases, or to discover ranges of the variables or
parameters that require an appropriate combination of both
analytic and numeric computation. Good judgment may well
be required to determine the best choice of solution methods
in each particular case. Within this context we point out that
problems that request a “sketch” are generally intended to
be completed without the use of any technology (except your
writing device).

We believe that it is important for students to understand
that (except perhaps in courses on differential equations) the
goal of solving a differential equation is seldom simply to
obtain the solution. Rather, we seek the solution in order to
obtain insight into the behavior of the process that the equation
purports to model. In other words, the solution is not an end
in itself. Thus, we have included in the text a great many
problems, as well as some examples, that call for conclusions
to be drawn about the solution. Sometimes this takes the form
of finding the value of the independent variable at which the
solution has a certain property, or determining the long-term
behavior of the solution. Other problems ask for the effect of
variations in a parameter, or for the determination of all values
of a parameter at which the solution experiences a substantial
change. Such problems are typical of those that arise in the
applications of differential equations, and, depending on the
goals of the course, an instructor has the option of assigning as
few or as many of these problems as desired.

Readers familiar with the preceding edition will observe
that the general structure of the book is unchanged. The
minor revisions that we have made in this edition are in
many cases the result of suggestions from users of earlier
editions. The goals are to improve the clarity and readability of
our presentation of basic material about differential equations
and their applications. More specifically, the most important
revisions include the following:

1. Chapter 1 has been rewritten. Instead of a separate section
on the History of Differential Equations, this material
appears in three installments in the remaining three
section.

2. Additional words of explanation and/or more explicit
details in the steps in a derivation have been added
throughout each chapter. These are too numerous and
widespread to mention individually, but collectively they
should help to make the book more readable for many
students.

3. There are about forty new or revised problems scattered
throughout the book. The total number of problems has
been reduced by about 400 problems, which are still
available through WileyPlus, leaving about 1600 problems
in print.

4. There are new examples in Sections 2.1, 3.8, and 7.5.
5. The majority (is this correct?) of the figures have been

redrawn, mainly by the use full color to allow for easier
identification of critical properties of the solution. In

addition, numerous captions have been expanded to clarify
the purpose of the figure without requiring a search of the
surrounding text.

6. There are several new references, and some others have
been updated.

The authors have found differential equations to be a
never-ending source of interesting, and sometimes surprising,
results and phenomena. We hope that users of this book, both
students and instructors, will share our enthusiasm for the
subject.

William E. Boyce and Douglas B. Meade
Watervliet, New York and Columbia, SC

29 August 2016

Supplemental Resources for
Instructors and Students
An Instructor’s Solutions Manual, ISBN 978-1-119-16976-5,
includes solutions for all problems not contained in the Student
Solutions Manual.

A Student Solutions Manual, ISBN 978-1-119-16975-8,
includes solutions for selected problems in the text.

A Book Companion Site, www.wiley.com/college/boyce,
provides a wealth of resources for students and instructors,
including

• PowerPoint slides of important definitions, examples, and
theorems from the book, as well as graphics for presentation
in lectures or for study and note taking.

• Chapter Review Sheets, which enable students to test their
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text.

• Mathematica, Maple, and MATLAB data files for selected
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assigned as individual homework or as group assignments.

A series of supplemental guidebooks, also published by John
Wiley & Sons, can be used with Boyce/DiPrima/Meade in
order to incorporate computing technologies into the course.
These books emphasize numerical methods and graphical
analysis, showing how these methods enable us to interpret
solutions of ordinary differential equations (ODEs) in the real
world. Separate guidebooks cover each of the three major
mathematical software formats, but the ODE subject matter is
the same in each.
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clear roadmap: what to do, how to do it, if they did it right.
Students will take more initiative so you’ll have greater impact
on their achievement in the classroom and beyond.

WileyPLUS, is loaded with all of the supplements above,
and it also features

• The E-book, which is an exact version of the print text
but also features hyperlinks to questions, definitions, and
supplements for quicker and easier support.
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CHAPTER 1

Introduction

In this first chapter we provide a foundation for your study of differential equations in several
different ways. First, we use two problems to illustrate some of the basic ideas that we
will return to, and elaborate upon, frequently throughout the remainder of the book. Later,
to provide organizational structure for the book, we indicate several ways of classifying
differential equations.

The study of differential equations has attracted the attention of many of the world’s
greatest mathematicians during the past three centuries. On the other hand, it is important
to recognize that differential equations remains a dynamic field of inquiry today, with many
interesting open questions. We outline some of the major trends in the historical development
of the subject and mention a few of the outstanding mathematicians who have contributed to
it. Additional biographical information about some of these contributors will be highlighted
at appropriate times in later chapters.

1.1 Some Basic Mathematical Models;
Direction Fields
Before embarking on a serious study of differential equations (for example, by reading this
book or major portions of it), you should have some idea of the possible benefits to be gained by
doing so. For some students the intrinsic interest of the subject itself is enough motivation, but
for most it is the likelihood of important applications to other fields that makes the undertaking
worthwhile.

Many of the principles, or laws, underlying the behavior of the natural world
are statements or relations involving rates at which things happen. When expressed in
mathematical terms, the relations are equations and the rates are derivatives. Equations
containing derivatives are differential equations. Therefore, to understand and to investigate
problems involving the motion of fluids, the flow of current in electric circuits, the dissipation
of heat in solid objects, the propagation and detection of seismic waves, or the increase
or decrease of populations, among many others, it is necessary to know something about
differential equations.

A differential equation that describes some physical process is often called a
mathematical model of the process, and many such models are discussed throughout this
book. In this section we begin with two models leading to equations that are easy to solve. It
is noteworthy that even the simplest differential equations provide useful models of important
physical processes.

EXAMPLE 1 | A Falling Object

Suppose that an object is falling in the atmosphere near sea level. Formulate a differential equation
that describes the motion.

▼
1
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▼ Solution:
We begin by introducing letters to represent various quantities that may be of interest in this problem.
The motion takes place during a certain time interval, so let us use t to denote time. Also, let
us use v to represent the velocity of the falling object. The velocity will presumably change with
time, so we think of v as a function of t ; in other words, t is the independent variable and v is the
dependent variable. The choice of units of measurement is somewhat arbitrary, and there is nothing
in the statement of the problem to suggest appropriate units, so we are free to make any choice that
seems reasonable. To be specific, let us measure time t in seconds and velocity v in meters/second.
Further, we will assume that v is positive in the downward direction---that is, when the object is
falling.

The physical law that governs the motion of objects is Newton’s second law, which states that
the mass of the object times its acceleration is equal to the net force on the object. In mathematical
terms this law is expressed by the equation

F = ma, (1)

where m is the mass of the object, a is its acceleration, and F is the net force exerted on the object. To
keep our units consistent, we will measure m in kilograms, a in meters/second2, and F in newtons.
Of course, a is related to v by a = dv/dt , so we can rewrite equation (1) in the form

F = m
dv
dt

. (2)

Next, consider the forces that act on the object as it falls. Gravity exerts a force equal to
the weight of the object, or mg, where g is the acceleration due to gravity. In the units we
have chosen, g has been determined experimentally to be approximately equal to 9.8 m/s2 near
the earth’s surface.

There is also a force due to air resistance, or drag, that is more difficult to model. This is not
the place for an extended discussion of the drag force; suffice it to say that it is often assumed that
the drag is proportional to the velocity, and we will make that assumption here. Thus the drag force
has the magnitude γ v , where γ is a constant called the drag coefficient. The numerical value of the
drag coefficient varies widely from one object to another; smooth streamlined objects have much
smaller drag coefficients than rough blunt ones. The physical units for γ are mass/time, or kg/s for
this problem; if these units seem peculiar, remember that γ v must have the units of force, namely,
kg·m/s2.

In writing an expression for the net force F , we need to remember that gravity always acts in
the downward (positive) direction, whereas, for a falling object, drag acts in the upward (negative)
direction, as shown in Figure 1.1.1. Thus

F = mg − γ v (3)

and equation (2) then becomes

m
dv
dt

= mg − γ v. (4)

Differential equation (4) is a mathematical model for the velocity v of an object falling in the
atmosphere near sea level. Note that the model contains the three constants m, g, and γ . The constants
m and γ depend very much on the particular object that is falling, and they are usually different for
different objects. It is common to refer to them as parameters, since they may take on a range of
values during the course of an experiment. On the other hand, g is a physical constant, whose value
is the same for all objects.

γ υ

m

mg

FIGURE 1.1.1 Free-body diagram of the forces on a falling object.
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To solve equation (4), we need to find a function v = v( t) that satisfies the equation. It
is not hard to do this, and we will show you how in the next section. For the present, however,
let us see what we can learn about solutions without actually finding any of them. Our task
is simplified slightly if we assign numerical values to m and γ , but the procedure is the same
regardless of which values we choose. So, let us suppose that m = 10 kg and γ = 2 kg/s.
Then equation (4) can be rewritten as

dv
dt

= 9.8 − v
5
. (5)

EXAMPLE 2 | A Falling Object (continued)

Investigate the behavior of solutions of equation (5) without solving the differential equation.

Solution:
First let us consider what information can be obtained directly from the differential equation itself.
Suppose that the velocity v has a certain given value. Then, by evaluating the right-hand side of
differential equation (5), we can find the corresponding value of dv/dt . For instance, if v = 40, then
dv/dt = 1.8. This means that the slope of a solution v = v( t) has the value 1.8 at any point where
v = 40. We can display this information graphically in the tv-plane by drawing short line segments
with slope 1.8 at several points on the line v = 40. (See Figure 1.1.2(a)). Similarly, when v = 50,
then dv/dt = −0.2, and when v = 60, then dv/dt = −2.2, so we draw line segments with slope
−0.2 at several points on the line v = 50 (see Figure 1.1.2(b)) and line segments with slope −2.2 at
several points on the line v = 60 (see Figure 1.1.2(c)). Proceeding in the same way with other values
of v we create what is called a direction field, or a slope field. The direction field for differential
equation (5) is shown in Figure 1.1.3.

Remember that a solution of equation (5) is a function v = v( t) whose graph is a curve in
the tv-plane. The importance of Figure 1.1.3 is that each line segment is a tangent line to one
of these solution curves. Thus, even though we have not found any solutions, and no graphs of
solutions appear in the figure, we can nonetheless draw some qualitative conclusions about the
behavior of solutions. For instance, if v is less than a certain critical value, then all the line segments
have positive slopes, and the speed of the falling object increases as it falls. On the other hand, if v
is greater than the critical value, then the line segments have negative slopes, and the falling object
slows down as it falls. What is this critical value of v that separates objects whose speed is increasing
from those whose speed is decreasing? Referring again to equation (5), we ask what value of v will
cause dv/dt to be zero. The answer is v = (5) (9.8) = 49 m/s.

In fact, the constant function v( t) = 49 is a solution of equation (5). To verify this statement,
substitute v( t) = 49 into equation (5) and observe that each side of the equation is zero. Because
it does not change with time, the solution v( t) = 49 is called an equilibrium solution. It is
the solution that corresponds to a perfect balance between gravity and drag. In Figure 1.1.3 we show
the equilibrium solution v( t) = 49 superimposed on the direction field. From this figure we can
draw another conclusion, namely, that all other solutions seem to be converging to the equilibrium
solution as t increases. Thus, in this context, the equilibrium solution is often called the terminal
velocity.
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FIGURE 1.1.2 Assembling a direction field for equation (5): dv/dt = 9.8−v/5. (a) when v = 40,
dv/dt = 1.8, (b) when v = 50, dv/dt = −0.2, and (c) when v = 60, dv/dt = −2.2.
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FIGURE 1.1.3 Direction field and equilibrium solution for equation (5):

dv/dt = 9.8 − v/5.

The approach illustrated in Example 2 can be applied equally well to the more general
differential equation (4), where the parameters m and γ are unspecified positive numbers. The
results are essentially identical to those of Example 2. The equilibrium solution of equation (4)
is the constant solution v( t) = mg/γ . Solutions below the equilibrium solution increase with
time, and those above it decrease with time. As a result, we conclude that all solutions approach
the equilibrium solution as t becomes large.

Direction Fields. Direction fields are valuable tools in studying the solutions of differential
equations of the form

dy
dt

= f ( t , y) , (6)

where f is a given function of the two variables t and y, sometimes referred to as the rate
function. A direction field for equations of the form (6) can be constructed by evaluating f
at each point of a rectangular grid. At each point of the grid, a short line segment is drawn
whose slope is the value of f at that point. Thus each line segment is tangent to the graph
of the solution passing through that point. A direction field drawn on a fairly fine grid gives
a good picture of the overall behavior of solutions of a differential equation. Usually a grid
consisting of a few hundred points is sufficient. The construction of a direction field is often
a useful first step in the investigation of a differential equation.

Two observations are worth particular mention. First, in constructing a direction field, we
do not have to solve equation (6); we just have to evaluate the given function f ( t , y) many
times. Thus direction fields can be readily constructed even for equations that may be quite
difficult to solve. Second, repeated evaluation of a given function and drawing a direction field
are tasks for which a computer or other computational or graphical aid are well suited. All the
direction fields shown in this book, such as the one in Figures 1.1.2 and 1.1.3, were computer
generated.

Field Mice and Owls. Now let us look at another, quite different example. Consider a
population of field mice that inhabit a certain rural area. In the absence of predators we assume
that the mouse population increases at a rate proportional to the current population. This
assumption is not a well-established physical law (as Newton’s law of motion is in Example 1),
but it is a common initial hypothesis1 in a study of population growth. If we denote time by t
and the mouse population at time t by p( t) , then the assumption about population growth can
be expressed by the equation

dp
dt

= r p, (7)

.........................................................................................................................................................................
1A better model of population growth is discussed in Section 2.5.
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where the proportionality factor r is called the rate constant or growth rate. To be specific,
suppose that time is measured in months and that the rate constant r has the value 0.5/month.
Then the two terms in equation (7) have the units of mice/month.

Now let us add to the problem by supposing that several owls live in the same
neighborhood and that they kill 15 field mice per day. To incorporate this information into
the model, we must add another term to the differential equation (7), so that it becomes

dp
dt

= p
2

− 450. (8)

Observe that the predation term is −450 rather than −15 because time is measured in months,
so the monthly predation rate is needed.

EXAMPLE 3

Investigate the solutions of differential equation (8) graphically.

Solution:
A direction field for equation (8) is shown in Figure 1.1.4. For sufficiently large values of p it can
be seen from the figure, or directly from equation (8) itself, that dp/dt is positive, so that solutions
increase. On the other hand, if p is small, then dp/dt is negative and solutions decrease. Again,
the critical value of p that separates solutions that increase from those that decrease is the value of
p for which dp/dt is zero. By setting dp/dt equal to zero in equation (8) and then solving for p,
we find the equilibrium solution p( t) = 900, for which the growth term and the predation term in
equation (8) are exactly balanced. The equilibrium solution is also shown in Figure 1.1.4.

1 2 t3 4 5

900

850

800

950

1000

p

FIGURE 1.1.4 Direction field (red) and equilibrium solution (blue) for
equation (8): dp/dt = p/2 − 450.

Comparing Examples 2 and 3, we note that in both cases the equilibrium solution separates
increasing from decreasing solutions. In Example 2 other solutions converge to, or are attracted
by, the equilibrium solution, so that after the object falls long enough, an observer will see
it moving at very nearly the equilibrium velocity. On the other hand, in Example 3 other
solutions diverge from, or are repelled by, the equilibrium solution. Solutions behave very
differently depending on whether they start above or below the equilibrium solution. As
time passes, an observer might see populations either much larger or much smaller than the
equilibrium population, but the equilibrium solution itself will not, in practice, be observed.
In both problems, however, the equilibrium solution is very important in understanding how
solutions of the given differential equation behave.

A more general version of equation (8) is

dp
dt

= r p − k, (9)
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where the growth rate r and the predation rate k are positive constants that are otherwise
unspecified. Solutions of this more general equation are very similar to those of equation (8).
The equilibrium solution of equation (9) is p( t) = k/r . Solutions above the equilibrium
solution increase, while those below it decrease.

You should keep in mind that both of the models discussed in this section have their
limitations. The model (5) of the falling object is valid only as long as the object is falling
freely, without encountering any obstacles. If the velocity is large enough, the assumption
that the frictional resistance is linearly proportional to the velocity has to be replaced with
a nonlinear approximation (see Problem 21). The population model (8) eventually predicts
negative numbers of mice (if p < 900) or enormously large numbers (if p > 900). Both of
these predictions are unrealistic, so this model becomes unacceptable after a fairly short time
interval.

Constructing Mathematical Models. In applying differential equations to any of the
numerous fields in which they are useful, it is necessary first to formulate the appropriate
differential equation that describes, or models, the problem being investigated. In this section
we have looked at two examples of this modeling process, one drawn from physics and
the other from ecology. In constructing future mathematical models yourself, you should
recognize that each problem is different, and that successful modeling cannot be reduced to the
observance of a set of prescribed rules. Indeed, constructing a satisfactory model is sometimes
the most difficult part of the problem. Nevertheless, it may be helpful to list some steps that
are often part of the process:

1. Identify the independent and dependent variables and assign letters to represent them.
Often the independent variable is time.

2. Choose the units of measurement for each variable. In a sense the choice of units is
arbitrary, but some choices may be much more convenient than others. For example, we
chose to measure time in seconds for the falling-object problem and in months for the
population problem.

3. Articulate the basic principle that underlies or governs the problem you are investigating.
This may be a widely recognized physical law, such as Newton’s law of motion, or it
may be a more speculative assumption that may be based on your own experience or
observations. In any case, this step is likely not to be a purely mathematical one, but will
require you to be familiar with the field in which the problem originates.

4. Express the principle or law in step 3 in terms of the variables you chose in step 1.
This may be easier said than done. It may require the introduction of physical constants
or parameters (such as the drag coefficient in Example 1) and the determination of
appropriate values for them. Or it may involve the use of auxiliary or intermediate
variables that must then be related to the primary variables.

5. If the units agree, then your equation at least is dimensionally consistent, although it may
have other shortcomings that this test does not reveal.

6. In the problems considered here, the result of step 4 is a single differential equation,
which constitutes the desired mathematical model. Keep in mind, though, that in more
complex problems the resulting mathematical model may be much more complicated,
perhaps involving a system of several differential equations, for example.

Historical Background, Part I: Newton, Leibniz, and the Bernoullis. Without knowing
something about differential equations and methods of solving them, it is difficult to appreciate
the history of this important branch of mathematics. Further, the development of differential
equations is intimately interwoven with the general development of mathematics and cannot
be separated from it. Nevertheless, to provide some historical perspective, we indicate here
some of the major trends in the history of the subject and identify the most prominent early
contributors. The rest of the historical background in this section focuses on the earliest
contributors from the seventeenth century. The story continues at the end of Section 1.2 with
an overview of the contributions of Euler and other eighteenth-century (and early-nineteenth-
century) mathematicians. More recent advances, including the use of computers and other
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technologies, are summarized at the end of Section 1.3. Additional historical information is
contained in footnotes scattered throughout the book and in the references listed at the end of
the chapter.

The subject of differential equations originated in the study of calculus by Isaac Newton
(1643--1727) and Gottfried Wilhelm Leibniz (1646--1716) in the seventeenth century. Newton
grew up in the English countryside, was educated at Trinity College, Cambridge, and became
Lucasian Professor of Mathematics there in 1669. His epochal discoveries of calculus and of
the fundamental laws of mechanics date to 1665. They were circulated privately among his
friends, but Newton was extremely sensitive to criticism and did not begin to publish his results
until 1687 with the appearance of his most famous book Philosophiae Naturalis Principia
Mathematica. Although Newton did relatively little work in differential equations as such, his
development of the calculus and elucidation of the basic principles of mechanics provided a
basis for their applications in the eighteenth century, most notably by Euler (see Historical
Background, Part II in Section 1.2). Newton identified three forms of first-order differential
equations: dy/dx = f ( x) , dy/dx = f ( y) , and dy/dx = f ( x , y) . For the latter equation
he developed a method of solution using infinite series when f ( x , y) is a polynomial in x and
y. Newton’s active research in mathematics ended in the early 1690s, except for the solution
of occasional “challenge problems” and the revision and publication of results obtained much
earlier. He was appointed Warden of the British Mint in 1696 and resigned his professorship a
few years later. He was knighted in 1705 and, upon his death in 1727, became the first scientist
buried in Westminster Abbey.

Leibniz was born in Leipzig, Germany, and completed his doctorate in philosophy at the
age of 20 at the University of Altdorf. Throughout his life he engaged in scholarly work in
several different fields. He was mainly self-taught in mathematics, since his interest in this
subject developed when he was in his twenties. Leibniz arrived at the fundamental results of
calculus independently, although a little later than Newton, but was the first to publish them,
in 1684. Leibniz was very conscious of the power of good mathematical notation and was
responsible for the notation dy/dx for the derivative and for the integral sign. He discovered
the method of separation of variables (Section 2.2) in 1691, the reduction of homogeneous
equations to separable ones (Section 2.2, Problem 30) in 1691, and the procedure for solving
first-order linear equations (Section 2.1) in 1694. He spent his life as ambassador and adviser
to several German royal families, which permitted him to travel widely and to carry on an
extensive correspondence with other mathematicians, especially the Bernoulli brothers. In the
course of this correspondence many problems in differential equations were solved during the
latter part of the seventeenth century.

The Bernoulli brothers, Jakob (1654--1705) and Johann (1667--1748), of Basel,
Switzerland did much to develop methods of solving differential equations and to extend
the range of their applications. Jakob became professor of mathematics at Basel in 1687,
and Johann was appointed to the same position upon his brother’s death in 1705. Both
men were quarrelsome, jealous, and frequently embroiled in disputes, especially with each
other. Nevertheless, both also made significant contributions to several areas of mathematics.
With the aid of calculus, they solved a number of problems in mechanics by formulating
them as differential equations. For example, Jakob Bernoulli solved the differential equation
y� = (

a3/(b2 y − a3)
)1/2 (see Problem 9 in Section 2.2) in 1690 and, in the same paper, first

used the term “integral” in the modern sense. In 1694 Johann Bernoulli was able to solve the
equation dy/dx = y/(ax) (see Problem 10 in Section 2.2). One problem that both brothers
solved, and that led to much friction between them, was the brachistochrone problem (see
Problem 24 in Section 2.3). The brachistochrone problem was also solved by Leibniz, Newton,
and the Marquis de l’Hôpital. It is said, perhaps apocryphally, that Newton learned of the
problem late in the afternoon of a tiring day at the Mint and solved it that evening after dinner.
He published the solution anonymously, but upon seeing it, Johann Bernoulli exclaimed, “Ah,
I know the lion by his paw.”

Daniel Bernoulli (1700--1782), son of Johann, migrated to St. Petersburg, Russia, as a
young man to join the newly established St. Petersburg Academy, but returned to Basel in
1733 as professor of botany and, later, of physics. His interests were primarily in partial
differential equations and their applications. For instance, it is his name that is associated with
the Bernoulli equation in fluid mechanics. He was also the first to encounter the functions that
a century later became known as Bessel functions (Section 5.7).
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Problems
In each of Problems 1 through 4, draw a direction field for the
given differential equation. Based on the direction field, determine the
behavior of y as t → ∞. If this behavior depends on the initial value
of y at t = 0, describe the dependency.

G 1. y� = 3 − 2y
G 2. y� = 2y − 3

G 3. y� = −1 − 2y
G 4. y� = 1 + 2y

In each of Problems 5 and 6, write down a differential equation of the
form dy/dt = ay + b whose solutions have the required behavior as
t → ∞.
5. All solutions approach y = 2/3.
6. All other solutions diverge from y = 2.

In each of Problems 7 through 10, draw a direction field for the
given differential equation. Based on the direction field, determine the
behavior of y as t → ∞. If this behavior depends on the initial value
of y at t = 0, describe this dependency. Note that in these problems
the equations are not of the form y� = ay + b, and the behavior of
their solutions is somewhat more complicated than for the equations
in the text.

G 7. y� = y(4 − y)

G 8. y� = −y(5 − y)
G 9. y� = y2

G 10. y� = y( y − 2) 2

Consider the following list of differential equations, some of which
produced the direction fields shown in Figures 1.1.5 through 1.1.10.
In each of Problems 11 through 16, identify the differential equation
that corresponds to the given direction field.

a. y� = 2y − 1
b. y� = 2 + y
c. y� = y − 2
d. y� = y( y + 3)
e. y� = y( y − 3)
f. y� = 1 + 2y
g. y� = −2 − y
h. y� = y(3 − y)
i. y� = 1 − 2y
j. y� = 2 − y

11. The direction field of Figure 1.1.5.
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FIGURE 1.1.5 Problem 11.

12. The direction field of Figure 1.1.6.
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FIGURE 1.1.6 Problem 12.

13. The direction field of Figure 1.1.7.
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FIGURE 1.1.7 Problem 13.

14. The direction field of Figure 1.1.8.
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FIGURE 1.1.8 Problem 14.

15. The direction field of Figure 1.1.9.

–1

1

2

3

4

5

1 2 3 4

y

t

FIGURE 1.1.9 Problem 15.
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16. The direction field of Figure 1.1.10.
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FIGURE 1.1.10 Problem 16.

17. A pond initially contains 1,000,000 gal of water and an unknown
amount of an undesirable chemical. Water containing 0.01 grams of
this chemical per gallon flows into the pond at a rate of 300 gal/h. The
mixture flows out at the same rate, so the amount of water in the pond
remains constant. Assume that the chemical is uniformly distributed
throughout the pond.

a. Write a differential equation for the amount of chemical in
the pond at any time.
b. How much of the chemical will be in the pond after a very
long time? Does this limiting amount depend on the amount that
was present initially?
c. Write a differential equation for the concentration of the
chemical in the pond at time t . Hint: The concentration is
c = a/v = a( t)/106.

18. A spherical raindrop evaporates at a rate proportional to its
surface area. Write a differential equation for the volume of the
raindrop as a function of time.
19. Newton’s law of cooling states that the temperature of an
object changes at a rate proportional to the difference between the
temperature of the object itself and the temperature of its surroundings
(the ambient air temperature in most cases). Suppose that the ambient
temperature is 70◦F and that the rate constant is 0.05 (min)−1. Write a
differential equation for the temperature of the object at any time. Note
that the differential equation is the same whether the temperature of
the object is above or below the ambient temperature.

20. A certain drug is being administered intravenously to a hospital
patient. Fluid containing 5 mg/cm3 of the drug enters the patient’s
bloodstream at a rate of 100 cm3/h. The drug is absorbed by body
tissues or otherwise leaves the bloodstream at a rate proportional to
the amount present, with a rate constant of 0.4/h.

a. Assuming that the drug is always uniformly distributed
throughout the bloodstream, write a differential equation for the
amount of the drug that is present in the bloodstream at any time.
b. How much of the drug is present in the bloodstream after a
long time?

N 21. For small, slowly falling objects, the assumption made in
the text that the drag force is proportional to the velocity is a good one.
For larger, more rapidly falling objects, it is more accurate to assume
that the drag force is proportional to the square of the velocity.2

a. Write a differential equation for the velocity of a falling
object of mass m if the magnitude of the drag force is
proportional to the square of the velocity and its direction is
opposite to that of the velocity.
b. Determine the limiting velocity after a long time.
c. If m = 10 kg, find the drag coefficient so that the limiting
velocity is 49 m/s.
N d. Using the data in part c, draw a direction field and compare
it with Figure 1.1.3.

In each of Problems 22 through 25, draw a direction field for the
given differential equation. Based on the direction field, determine the
behavior of y as t → ∞. If this behavior depends on the initial value
of y at t = 0, describe this dependency. Note that the right-hand sides
of these equations depend on t as well as y; therefore, their solutions
can exhibit more complicated behavior than those in the text.
G 22. y� = −2 + t − y

G 23. y� = e−t + y

G 24. y� = 3 sin t + 1 + y

G 25. y� = −2t + y
2y

.............................................................................................................................
2See Lyle N. Long and Howard Weiss, “The Velocity Dependence of
Aerodynamic Drag: A Primer for Mathematicians,” American Mathematical
Monthly 106 (1999), 2, pp. 127--135.

1.2 Solutions of Some Differential Equations
In the preceding section we derived the differential equations

m
dv
dt

= mg − γ v (1)

and
dp
dt

= r p − k. (2)

Equation (1) models a falling object, and equation (2) models a population of field mice preyed
on by owls. Both of these equations are of the general form

dy
dt

= ay − b, (3)

where a and b are given constants. We were able to draw some important qualitative
conclusions about the behavior of solutions of equations (1) and (2) by considering the
associated direction fields. To answer questions of a quantitative nature, however, we need
to find the solutions themselves, and we now investigate how to do that.




